

# Planning Your Drip Irrigation System

When installing your water-saving, drip irrigation system, it's essential to plan ahead! To make planning as convenient as possible for you, we've outlined five simple steps to help guide you to the right drip products for your landscape, and ensure drip system success!

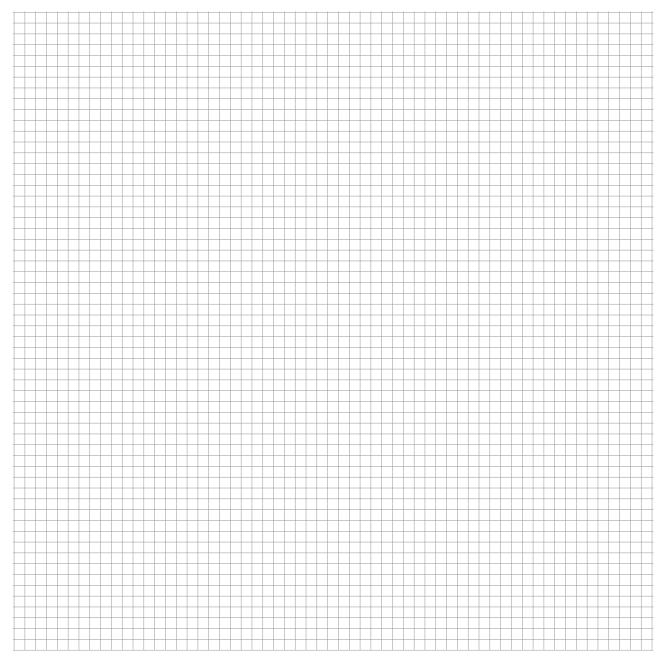
### What We Will Cover

- Sketch the Area
- Determine the Soil Type
- Determine Watering Frequency
- Calculate Water Requirements
- Determine Distance for Drip System

# Simple Setup With Big Rewards

# Plan Your Drip Irrigation System in Five Simple Steps

Compared to conventional sprinkler systems, drip irrigation systems are simple to design, inexpensive, and easy to install. They can also reduce disease problems associated with high levels of moisture on the leaves of some plants. Unlike traditional high-volume and high-pressure sprinkler systems (which require careful planning, extensive trenching, and special tools), drip irrigation systems can be easily installed above or below ground, without special tools or extensive technical knowledge. Drip irrigation delivers water measured in gallons per hour (GPH), and applies water only where necessary. This yields big rewards—improved plant health, water conservation, and reduced weed growth!


So how can you start enjoying the many rewards of drip irrigation? Use the following five steps as a guide.

**Did you know** The stronger the wind blows, the deeper the roots grow?

# 1) Sketch the Area

Start by making an accurate top view sketch of the areas that need to be watered. Make sure that on the site's outline it includes your home, any retaining walls, sidewalks, paved areas, and water sources accurately and to scale. This will require measuring the area. We recommend using graph paper with small squares to make drawing to scale easier. Each small square on this manual graph can represent one foot of your property (usually appropriate for residential landscapes), or you can use 1" graph = 10' of your area.

□ = 1′



Be sure to note and list the locations of your small and large trees, shrubs, groundcover, flowerbeds, containers and vegetable garden. You will select the water emission devices and estimate the total flow rate based on the soil type and concentration of plants.

# 2) Determine Soil Type

To determine which type of soil you have in a given area, take a handful of dry soil, grip tightly and release. Sandy (coarse) soil will crumble and fall apart. Loamy (medium) soil will hold together but easily break apart. Clay will mold without breaking.

| Water M    | lovement in S | Soil                                               |                                                                                           |
|------------|---------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|
| Sandy Soil |               | the water will<br>tend to move<br>straight down    | micro sprinklers or closely spaced<br>(12" apart) 1 or 2 GPH drippers<br>can be used.     |
| Loamy Soil |               | the water will<br>move slowly and<br>spread evenly | using .5 or 1 GPH drippers with<br>a 16" to 18" spacing is most<br>beneficial.            |
| Clay Soil  |               | the water will<br>percolate very<br>slowly         | low flow such as .5 or 1 GPH<br>drippers at a wider spacing of 20"<br>to 30" can be used. |

### Soil Matters!

The soil is a storage room for the plants' nutrients, and the medium through which water and nutrients move. It is the anchor for plants and the reservoir of water for plant growth. There are various types of soil with differing characteristics, which determine what types of plants can be grown. Each type of soil will require a different drip or micro sprinkler layout and spacing.



### The Soil and Water Relationship

A micro irrigation system is essentially a transportation system which delivers water to a point in or near the plant's root zone. The final link in this transportation system is the soil. The soil's physical and chemical properties determine its ability to transport as well store water and nutrients.





## Key Terms

| Capillary Moisture         | the water held in pore spaces by the surface tension between the water and<br>the soil particles. Capillary moisture is the primary force in spreading the<br>water horizontally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gravitational Water        | free water in the soil which moves downward under the influence of gravity.<br>After the soil is saturated, the gravitational water will percolate downwards,<br>leaving the soil at field capacity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Field Capacity             | a measure of the water held by the soil against the influence of gravity. If<br>soil is saturated by rainfall or irrigation, and then allowed to drain freely for<br>24 hours, the soil is usually at field capacity. For most plants, soil moisture<br>content near field capacity is the ideal moisture level for vegetative growth<br>because there is a good balance between soil moisture tension and aeration.<br>The soil will lose very little water after it has drained to field capacity if there<br>are no plants growing in it. Plants will remove water by transpiration and<br>reduce the soil moisture. On hot days, plants may use water faster than the<br>soil can supply the roots, or faster than the roots can supply the rest of the<br>plant. This will cause the plant to wilt. Normally, given sufficient soil moisture<br>the plant will recover during the night. |
| Permanent<br>Wilting Point | the soil moisture content at which the plant wilts and remains in a wilted state, ceasing normal growth and transpiration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# 3) Determine Watering Frequency

It's all about timing. Determining how much and how often to water your plants is critical to keeping them healthy.

| Where t          | o use drip |                                                                                                                                                                                                                                                                                                              |
|------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drip Irrigation  |            | trees, shrubs, vines, vegetables, and any individual plant.                                                                                                                                                                                                                                                  |
| Micro Sprinklers |            | best used on ground cover, flower beds, groups of<br>plants, hillsides and/or on very sandy soils (as water<br>will percolate downward before it can spread far enough<br>horizontally). Avoid micro sprinklers in areas where it is<br>windy; high winds will disturb the micro sprinkler spray<br>pattern. |
| Drip Soaker Tape |            | ideal for vegetable beds and planters and narrow planting areas.                                                                                                                                                                                                                                             |

Did you know That drip irrigation helps to reduce pest problems and weed growth?

## Getting the Timing Right for Drippers

Ideal for irrigating vines, flowers, vegetable gardens and more, drippers are a small and compact watering device designed to deliver water at a very low rate and pressure. The following chart offers recommendations as to the length of time a drip system should run.





### **Dripper Watering Schedule**

| Type of Plants            | Watering Time          | Watering Frequency (by climate) |        |          |  |  |  |  |
|---------------------------|------------------------|---------------------------------|--------|----------|--|--|--|--|
| Flowers, Vegetables       | 30 minutes -<br>1 hour | 1-2 days                        | 3 days | 3-4 days |  |  |  |  |
| Small Trees<br>or Shrubs  | 1-2 hours              | 1-2 days                        | 3 days | 3-4 days |  |  |  |  |
| Vines                     | 3-6 hours              | 1-2 days                        | 3 days | 3-4 days |  |  |  |  |
| Medium Trees<br>or Shrubs | 5-7 hours              | 1-2 days                        | 3 days | 3-4 days |  |  |  |  |
| Large Trees<br>or Shrubs  | 6-8 hours              | 1-2 days                        | 3 days | 3-4 days |  |  |  |  |
| Pots up to 15"            | 3-5 minutes            | 1-2 days                        | 3 days | 3-4 days |  |  |  |  |
| Pots over 15"             | 5-10 minutes           | 1-2 days                        | 3 days | 3-4 days |  |  |  |  |

📕 = Hot Climate 🛛 = Warm Climate 🔄 = Cool Climate

### Getting the Timing Right for Micro Sprinklers

Micro sprinklers throw water over a wide area and are a great way to irrigate flowerbeds, groundcover, greenhouses and more. The following chart offers recommendations as to the length of time a micro sprinkler system should run.





# Micro Sprinkler Watering Schedule

| Watering Time        | Watering Frequency (by climate)                             |                                                                                 |                                                                                                               |  |  |  |  |
|----------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 30 minutes-1<br>hour | 1-2 days                                                    | 3 days                                                                          | 4-6 days                                                                                                      |  |  |  |  |
| 1-2 hours            | 2-3 days                                                    | 4-5 days                                                                        | 5-6 days                                                                                                      |  |  |  |  |
| 2-3 hours            | 2-3 days                                                    | 4-5 days                                                                        | 6-7 days                                                                                                      |  |  |  |  |
| 2-5 hours            | 2-3 days                                                    | 4-5 days                                                                        | 5-7 days                                                                                                      |  |  |  |  |
| 5-10 minutes         | 2-4 times/day                                               | 2 times/day                                                                     | 1 time/2 days                                                                                                 |  |  |  |  |
|                      | 30 minutes-1<br>hour<br>1-2 hours<br>2-3 hours<br>2-5 hours | 30 minutes-1<br>hour1-2 days1-2 hours2-3 days2-3 hours2-3 days2-5 hours2-3 days | 30 minutes-1<br>hour1-2 days3 days1-2 hours2-3 days4-5 days2-3 hours2-3 days4-5 days2-5 hours2-3 days4-5 days |  |  |  |  |

= Hot Climate = Warm Climate = Cool Climate

# 4) Calculate Water Requirements

Different plant species can vary considerably in their rates of evapotranspiration. Some plants transpire large amounts of water, while others use relatively little. Values for plant factor or crop coefficients are sometime available through local sources such as Agricultural Extension Services and local newspapers. If you have all the information concerning the individual plant site, the following pieces of the puzzle will fall into place.

While reading through these steps and examples, be sure to consult our tables for reference.

- Table 1 Ks = Landscape Coefficient
- Table 2 Estimated Emitter Uniformity
- Table 3 ETr = Reference Evapotranspiration Rate and Climate Efficiency
- Table 4 Wetting pattern of Drip Emitter in Different Soils



Use the formula below to calculate the amount of water that each plant will need.

Gallons per day per plant =

.623  $\times$  plants area  $\times$  Ks  $\times$  ETr

climate efficiency × estimated emitter uniformity (in decimal form)



Especially in hot, dry weather, citrus trees can require a lot of water to bear juicy fruit! Drip irrigation systems help fruit trees to produce dense roots which are able to drink enough water for healthy fruit production.

#### Table 1 – A Landscape Coefficient (Ks)

| High | Average                      | Low                                           |
|------|------------------------------|-----------------------------------------------|
| 0.90 | 0.50                         | 0.20                                          |
| 0.70 | 0.50                         | 0.20                                          |
| 0.90 | 0.50                         | 0.20                                          |
| 0.90 | 0.50                         | 0.20                                          |
| 0.80 | 0.75                         | 0.60                                          |
|      | 0.90<br>0.70<br>0.90<br>0.90 | 0.90 0.50   0.70 0.50   0.90 0.50   0.90 0.50 |

= Average

🔲 = Low

Table 2 – Estimated Emitter Uniformity

🔲 = High

| Emitter Type      | Poor     | Fair      | Good  |
|-------------------|----------|-----------|-------|
| Inline Dripper    | 65%      | 80%       | 90%   |
| PC Inline Dripper | 85%      | 90%       | 95%   |
| Button Dripper    | 60%      | 75%       | 90%   |
| PC Button Dripper | 80%      | 85%       | 90%   |
|                   | 🔲 = High | = Average | = Low |

#### Table 3 – ETr and Climate Efficiency

ETr varies as a function of the mix of plants, density of plantings, and the effects of microclimate.

| Climate    | <b>Definition</b><br>(mid-summer) | ETr<br>(worst case,<br>inches per day) | <b>Climate Efficiency</b><br>(%) |
|------------|-----------------------------------|----------------------------------------|----------------------------------|
| Cool Humid | <70 degree F > 50% H              | .1015"                                 | 100                              |
| Cool Dry   | <70 degree F > 50% H              | .1520"                                 | 95                               |
| Warm Humid | <70-90 degree F > 50% H           | .1520"                                 | 95                               |
| Warm Dry   | <70-90 degree F > 50% H           | .20"25"                                | 90                               |
| Hot Humid  | <90 degree F > 50% H              | .2030"                                 | 90                               |
| Hot Dry    | <90 degree F > 50% H              | .3045"                                 | 85                               |

= Hot Climate

🔲 = Warm Climate 🛛 🔲 = Cool Climate 🛛 H = Humidity





### Step 2: Determine How Many Drippers to Use

Deciding on the number of drippers to use is part science, part math, and partly a judgment call. Remember that you must wet at least 60% of the plant's root zone. When unsure of the number of drippers needed, always use more. You must find the proper balance based on the formula and actual site conditions. You also need to be aware of the number of drippers to use. If you have one 4-GPH dripper watering a plant, and it plugs and stops working, what will happen to your plant? On the other hand, if you have four 1-GPH drippers, the plant has a better chance to survive and to grow.

Use the formula below to calculate how many drippers are needed to apply 12 gallons per day to the 10' tree.

Number of drippers per plant =

Square foot of plant root zone area Square foot of dripper wetted area

#### Example

Our plant root zone area is 78.5 sq.ft. If we have sandy soil, we can see from table 4 that you can expect 7-13 sq. ft of wetted area from a 1 GPH dripper. Let's stay on the conservative side and use 10 sq. ft of wetted area. The number of drippers for the 10 ft tree is 7.8 1 GPH drippers. Let's round it to 8 drippers.

7.8 drippers =

78.5 sq. ft 10 sq. ft with 1 GPH dripper





| Table 4 - | - Wetting I | Pattern of | Drip | <b>Emitter in</b> | <b>Different Soils</b> |
|-----------|-------------|------------|------|-------------------|------------------------|
|-----------|-------------|------------|------|-------------------|------------------------|

| Soil type | Dripper Flow Rates<br>(GPH) | Wetted Area<br>(ft) | Wetted Area<br>(sq. ft) |
|-----------|-----------------------------|---------------------|-------------------------|
| Sandy     | 0.5                         | 1-3                 | 1-7                     |
| Sandy     | 1.0 or 2.0                  | 3-4                 | 7-13                    |
| Loam      | 0.5                         | 2-4                 | 2-13                    |
| Loam      | 1.0 or 2.0                  | 3-5                 | 7-20                    |
| Clay      | 0.5                         | 2-3                 | 3-7                     |
| Clay      | 1.0 or 2.0                  | 3-5                 | 7-16                    |
| Clay      | 4.0                         | 4-6                 | 13-28                   |

🔲 = Sandy Soil

🔲 = Loamy Soil 🛛 🔲 = Clay Soil





To determine the system run timer per day, use the formula below.

Run time per day =

Plant water requirement (GPD)

Flow rates  $\,\times\,$  Number of drippers per plant

#### Example

If the tree needs 12 gallons per day, we have a run time of 1.5 hours every day, or 3 hours every two days.

1.5 hours = 12 GPD 1 GPH × 8 drippers

#### Conclusion

Turn the water on for 1.5 hours every day using 8 drippers at a flow rate of 1 GPH.



# 5) Determine Distance for Drip System

Every landscape is unique. Designating the appropriate amount of space between drippers, or determining the right amount of dripline will make all the difference for your plants.

#### Recommended Distance to Run a Drip System

Maximum Run of 1/4" Distribution tubing and 1/2" (.600 ID) Drip Hose with Button and Flag Drippers Maximum Run of 1/4" Distribution Tubing or 1/2" (.600 ID) Drip Hose with PC Dripper

| Flow Deviation     |            | Dripper Spacing on<br>1/4" Distribution Tubing<br>(feet) |    |    |    | Dripper Spacing on<br>1/2" Poly Tube<br>(feet) |         |         |     |     |     |
|--------------------|------------|----------------------------------------------------------|----|----|----|------------------------------------------------|---------|---------|-----|-----|-----|
| Products           | Flow Rates | 1'                                                       | 2' | 3' | 4' | 5'                                             | 1'      | 2'      | 3'  | 4'  | 5'  |
| PC Button Dripper  | 1 GPH      | 35                                                       | 50 | 72 | 88 | 105                                            | 320     | 530     | 670 | 820 | 970 |
| PC Button Dripper  | 2 GPH      | 25                                                       |    | 45 | 56 | 65                                             | 190     | 310     | 420 | 510 | 610 |
| PC Button Dripper  | 4 GPH      | 14                                                       | 22 | 30 | 36 | 40                                             | 120     | 200     | 250 | 320 | 450 |
| Button Dripper     | 1 GPH      | 17                                                       | 26 | 36 | 24 | 45                                             | 140     | 230     | 310 | 350 | 400 |
| Button Dripper     | .5 GPH     | 26                                                       | 40 | 50 | 64 | 70                                             | 195     | 320     | 430 | 525 | 610 |
| Button Dripper     | 2 GPH      | 10                                                       | 16 | 21 | 24 | 30                                             | 80      | 145     | 175 | 230 | 270 |
| Flag Dripper       | 1 GPH      | 17                                                       | 26 | 36 | 40 | 45                                             | 125     | 220     | 300 | 330 | 370 |
| Adjustable Dripper | 1 to10 GPH |                                                          |    |    | De | epends                                         | on flov | v rates |     |     |     |

**=** 1/4" Tubing

#### Maximum Recommended Drip Tubing Length on Flat Terrain Using a PC Dripper

Maximum Run of 1/4" Distribution Tubing and 1/2" (.600 ID) Drip Hose with Button and Flag Drippers Maximum Run of 1/4" Distribution Tubing or 1/2" (.600 ID) Drip Hose with PC Dripper

| Flow Rate<br>(GPH) | Dripper Spacing<br>(inches) | Drip Tubing Size .620 OD |     |         | Drip Tubing Size .700 OD |      |      |  |
|--------------------|-----------------------------|--------------------------|-----|---------|--------------------------|------|------|--|
|                    |                             |                          |     | Inlet F | Pressure                 |      |      |  |
|                    |                             | 15                       | 30  | 45      | 15                       | 30   | 45   |  |
| 0.5                | 12                          | 218                      | 337 | 406     | 274                      | 422  | 512  |  |
| 0.5                | 16                          | 271                      | 422 | 508     | 340                      | 528  | 640  |  |
| 0.5                | 20                          | 323                      | 502 | 607     | 403                      | 627  | 759  |  |
| 0.5                | 24                          | 370                      | 574 | 696     | 455                      | 713  | 865  |  |
| 0.5                | 30                          | 432                      | 680 | 809     | 521                      | 838  | 1013 |  |
| 0.5                | 40                          | 512                      | 809 | 990     | 640                      | 1016 | 1221 |  |
| 0.5                | 50                          | 611                      | 941 | 1155    | 749                      | 1188 | 1419 |  |
| 1                  | 12                          | 152                      | 234 | 281     | 188                      | 294  | 356  |  |
| 1                  | 20                          | 224                      | 350 | 422     | 277                      | 436  | 528  |  |
| 1                  | 30                          | 304                      | 472 | 571     | 373                      | 584  | 706  |  |
| 1                  | 40                          | 363                      | 568 | 693     | 442                      | 706  | 858  |  |
| 1                  | 50                          | 422                      | 660 | 812     | 521                      | 825  | 1010 |  |
| 2                  | 12                          | 96                       | 149 | 178     | 119                      | 185  | 224  |  |
| 2                  | 24                          | 142                      | 221 | 267     | 175                      | 274  | 330  |  |
| 2                  | 30                          | 195                      | 300 | 363     | 234                      | 370  | 449  |  |
| 2                  | 40                          | 231                      | 356 | 429     | 271                      | 442  | 538  |  |
| 2                  | 50                          | 271                      | 422 | 502     | 327                      | 515  | 627  |  |



= .700 OD Drip Tubing

#### Maximum Run of Dripline with PC Dripper 1.0 GPH

This chart describes the maximum length you can run the dripline and operate it properly.

| Length of Run<br>(feet) | Inlet Pressure (inches) |      |      |      |      |  |  |
|-------------------------|-------------------------|------|------|------|------|--|--|
|                         | 12"                     | 18"  | 24"  | 30"  | 36"  |  |  |
| 100                     | 1.3                     | 0.6  | 0.3  | 0.2  | 0.2. |  |  |
| 200                     | 10.5                    | 4.2  | 2.4  | 1.6  | 1.1  |  |  |
| 300                     | 35.0                    | 13.2 | 7.5  | 4.9  | 3.4  |  |  |
| 400                     | 78.8                    | 29.7 | 16.7 | 10.8 | 7.6  |  |  |
| 500                     |                         | 55.6 | 31.2 | 20.2 | 14.2 |  |  |
| 600                     |                         |      | 52.0 | 33.6 | 23.7 |  |  |

= not recommended

#### Maximum Run of Dripline with PC dripper .5 GPH

This chart describes the maximum length you can run the dripline and operate it properly (table demonstrates PSI loss per 100').

| Length of Run<br>(feet) | Drippers Spacing (inches) |      |      |      |      |  |
|-------------------------|---------------------------|------|------|------|------|--|
|                         | 12"                       | 18"  | 24"  | 30"  | 36"  |  |
| 100                     | 0.6                       | .2   | 0.1  | 0.1  | 0.1  |  |
| 200                     | 3.75                      | 1.6  | 0.9  | 0.6  | 0.4  |  |
| 300                     | 12.9                      | 5.1  | 2.9  | 1.9  | 1.3  |  |
| 400                     | 30.1                      | 11.4 | 6.4  | 4.2  | 3.0  |  |
| 500                     | 56.5                      | 21.3 | 12.0 | 7.8  | 5.5  |  |
| 600                     | 85.0                      | 35.5 | 20.0 | 13.0 | 9.2  |  |
| 700                     |                           | 54.8 | 30.8 | 20.0 | 14.1 |  |
| 800                     |                           | 79.8 | 44.8 | 29.0 | 20.5 |  |



# Chapter in Review

### Laying the Foundation

The foundation of a successful drip system is successful planning, and we hope that in this chapter you've discovered exactly how to plan your drip installation for your unique landscape. If you ever have any questions regarding the planning process or which products to use, you can always call our Customer Care team at The Drip Store.

We're available Monday through Friday, 7 p.m.- 4 p.m. (PST) at 760-597-1669 or toll free at 877-597-1669. Use the chart on the right to make sure that you've completed each step of the Drip Guide.

# My Drip Planning Checklist

1) Sketched my area

2) Determined my soil type

3) Determined my watering frequency

4) Calculated my water requirements

5) Determined distance to run my system

